Developmental regulation of key gluconeogenic molecules in nonhuman primates
نویسندگان
چکیده
Aberrant glucose regulation is common in preterm and full-term neonates leading to short and long-term morbidity/mortality; however, glucose metabolism in this population is understudied. The aim of this study was to investigate developmental differences in hepatic gluconeogenic pathways in fetal/newborn baboons. Fifteen fetal baboons were delivered at 125 day (d) gestational age (GA), 140d GA, and 175d GA (term = 185d GA) via cesarean section and sacrificed at birth. Term and healthy adult baboons were used as controls. Protein content and gene expression of key hepatic gluconeogenic molecules were measured: cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-C and PEPCK-M), glucose-6-phosphatase-alpha (G6Pase-α), G6Pase-β, fructose-1,6-bisphosphatase (FBPase), and forkhead box-O1 (FOXO1). Protein content of PEPCK-M increased with advancing gestation in fetal baboons (9.6 fold increase from 125d GA to 175d GA, P < 0.001). PEPCK-C gene expression was consistent with these developmental differences. Phosphorylation of FOXO1 was significantly lower in preterm fetal baboons compared to adults, and gene expression of FOXO1 was lower in all neonates when compared to adults (10% and 62% of adults respectively, P < 0.05). The FOXO1 target gene G6Pase expression was higher in preterm animals compared to term animals. No significant differences were found in G6Pase-α, G6Pase-β, FOXO1, and FBPase during fetal development. In conclusion, significant developmental differences are found in hepatic gluconeogenic molecules in fetal and neonatal baboons, which may impact the responses to insulin during the neonatal period. Further studies under insulin-stimulated conditions are required to understand the physiologic impact of these maturational differences.
منابع مشابه
Evolutionary developmental psychology: Contributions from comparative research with nonhuman primates
Evolutionary developmental psychology is a discipline that has the potential to integrate conceptual approaches to the study of behavioral development derived from psychology and biology as well as empirical data from humans and animals. Comparative research with animals, and especially with nonhuman primates, can provide evidence of adaptation in human psychological and behavioral traits by hi...
متن کاملEarly-life Social Adversity and Developmental Processes in Nonhuman Primates.
Most primate species produce offspring that are altricial and highly dependent upon caregivers. As a consequence, a host of developmental trajectories can be dramatically altered by variation in early experiences. We review the impact of early social experiences (in both experimental models and natural contexts) on developmental profiles in three species of nonhuman primates: marmosets, squirre...
متن کاملMaternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates.
Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and...
متن کاملEmotions, stress, and maternal motivation in primates.
Recent research conducted with nonhuman primates confirms that adaptive emotional processes, such as maternal attraction arousability and maternal anxiety arousability, enhance and sustain female motivation to interact with infants, invest in them, and protect them during the postpartum period. Changes in these emotional processes, and concomitant changes in maternal motivation, facilitate the ...
متن کاملPerinatal Exposure to a High-Fat Diet Is Associated with Reduced Hepatic Sympathetic Innervation in One-Year Old Male Japanese Macaques
Our group recently demonstrated that maternal high-fat diet (HFD) consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP) liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that pl...
متن کامل